
06.10.2015

1

Testing Concurrent Software
using Model Checking Techniques

and POSIX-Threads

Dr. Wolfgang Koch

Friedrich Schiller University Jena

Faculty of Mathematics and
Computer Science

Jena, Germany

wolfgang.koch@uni-jena.de

2

Errare humanum est,

in errore perseverare

stultum.

(To err is human, to persist in error is stupid.)

Motivation

3

� Motivation
� Software Tests

� Lock-free Operation, CAS
� Example – Lock-free LIFO Queue, Push and Pop

� Stress Test
� The ABA Problem

� Model Checking Techniques in Concurrency Testing
� Wrapper Layer and the Demonic Scheduler
� POSIX Threads, Semaphores

� Challenging Example – FIFO Queue, Enqueue and Dequeue

� Results, Hints for Testing Concurrent Software

� References

Contents
4

The importance of concurrent programming is rapidly growing
as multi-core processors replace older single core designs.

Today almost all PCs and Laptops have a
multi-core (e.g. quad-core) processor

using SMP (symmetric multiprocessing)
with shared memory and cache coherence

Concurrent software consists of competing and cooperating

processes or threads.

Additional fault types exist in concurrent software compared
to sequential software. Subtle interactions among threads

and the timing of asynchronous events can result in concurrency
errors that are hard to find, reproduce, and debug.

Motivation

06.10.2015

2

5

Additional fault types exist in concurrent software:

Failures in sequential programs are deterministic –
if a sequential program fails with a given set of inputs
and initial state, it will fail every time.

Failures in concurrent programs, on the other hand,
tend to be rare probabilistic events.

Unexpected interference among threads often results in

“Heisenbugs”
that are extremely difficult to reproduce and eliminate.

Motivation
6

Testing is the process of executing a program

with the intent of finding errors.

(The art of software testing, Glenford J. Myers)

E. W. Dijkstra:
Program testing can be used to show the presence of bugs,
but never to show their absence!

(The Humble Programmer, ACM Turing Lecture 1972)

This famous saying is formally correct, but completely misleading.

The fact is that NOTHING, not inspection, not formal proof,
not testing, can give 100% certainty of no errors.
Yet all these techniques, at some cost, can in fact reduce

the errors to whatever level you wish.

“You don’t have to test anything unless you want it to work.”

Software Test

7

Testing is the process of executing a program
with the intent of finding errors.

(The art of software testing, Glenford J. Myers)

Testing can find faults

When they are removed, software quality and reliability is improved

� Build confidence
� Demonstrate conformance to requirements
� Assess the software quality

Companies spent 30 – 50% time and budget of their software
development on testing

depending on the risks for the system
(loss of money, loss of market share, death or injury)

Software Test
8

Purpose of testing: build confidence

The testing paradox

Purpose of testing: to find faults

Finding faults destroys confidence

Purpose of testing: destroy confidence ???

The best way to build confidence
is to try to destroy it!

Software Test

06.10.2015

3

9

No generally accepted set of testing definitions used world wide

(new) standard BS 7925-1 (Glossary of testing terms)

adopted by the ISEB / ISTQB

� Error: a human action that produces an incorrect result

� Fault: a manifestation of an error in software (a state)

� also known as a defect or bug

� if executed, a fault may cause a failure

� Failure: deviation of the software from its expected

delivery or service (an event)

� (found defect – debugging necessary)

Defect - Error - Bug - Failure - Fault ?
10

Standard BS 7925-1 (Glossary of terms in software testing)

developed by a working party of the BCS SIGIST,
adopted by the ISTQB

BCS - British Computer Society
BCS SIGiST - Specialist Group in Software Testing

ISTQB - International Software Testing Qualifications Board
has defined the "ISTQB® Certified Tester" scheme
that has become the world-wide leader in the certification
of competences in software testing.

Hungarian Testing Board (HTB) - www.hstqb.org
Magyar Szoftvertesztelői Tanács Egyesület,
H-1117 Budapest, Neumann Janos u.1. Infopark "E"

Defect - Error - Bug - Failure - Fault ?

Error - Fault - Failure

A person makes
an error ...

… that creates a
fault in the
software ...

… that can cause
a failure

in operation

12

Source: ISTQB / ISEB Foundation Exam Practice

13

Additional Errors in Concurrent Software

� Deadlock, where task A can't continue until task B finished,

but at the same time, task B can't continue until task A finishes.

� Race condition, where the computer does not perform

tasks in the order the programmer intended.

� Concurrency errors in critical sections, mutual exclusions

Hard to reproduce

“Heisenbugs”

A neglect of the programmer:

One has to deal with the possible sources of nondeterminism

in concurrent software.

Sources of Errors in Concurrent Software

06.10.2015

4

14

Example: “Blocking” LIFO Queue (a Stack):

shared Node * Top;

shared Lock lock;

void push(Node *node)

{

Node *t; // local pointer

acquire(&lock);

t = Top;

node->Next = t;

Top = node;

release(&lock);

}

Blocking Queue

Data: C

Next: NULL

Data: B

Next: &C

Data: A

Next:

Top:

&B

&B&A

15

One disadvantage of locks:

If a thread holding a lock blocks, all waiting threads are
blocked too, no one is making any progress

A wait-free operation is guaranteed to complete
after a finite number of its own steps,
regardless of the timing behavior of other operations.

A lock-free operation guarantees that after a finite number
of its own steps, some operation (possibly in a different thread)
completes (also called nonblocking).

wait-freedom is a stronger condition than lock-freedom
wait-freedom is hard to achieve (and only with a lot of overhead)

Our queue with locks is neither wait-free nor lock-free

Wait-freedom, Lock-freedom

16

Disadvantages of locks → request for a lock-free method,

make changes on a copy, then set the copy into effect

in a single atomic step - if the original has not changed

boolean try_push(Node *node)

{ boolean res;

Node *t; // local pointer

t = Top; // local copy

node->Next = t; // still private node

// Top = node; // global – Danger!

atomic(if (Top==t) {Top=node; res=true;}

else res=false; // try again

)

return res;

}

Lock-free method
17

. . . set the copy into effect in a single atomic step

if the original has not changed

atomic(if (Top==t) {Top=node; res=true;}

else res=false; // Top not changed

)

We need an atomic primitive that accomplishes this task

(TSB and XCHG are not strong enough)

IBM introduced CompareAndSwap (CAS) in the IBM 370

res = CAS(&mem, expected, new); // boolean CAS

(Intel 1989: CMPXCHG – Compare and Exchange)

Lock-free method, CAS

06.10.2015

5

19

void push(Node *node)

{ Node *t;

while(true){

t = top;

node->Next = t;

if (CAS(&top,t,node)) break;

}

}

is lock-free:

if CAS succeeds, our thread completes the push-operation

if CAS fails, it failed because another thread has changed top

so the CAS of that other thread succeeded

the other tread has completed its (push-) operation

Lock-free methods
20

Node * pop(void)

{

Node *t, *next;

while(true){

t = top;

if (t == NULL) break; // empty stack

next = t->Next;

if (CAS(&top,t,next)) break; // lock-free

}

return t;

}

There might be a problem: we use a pointer to a node (t,t->Next),

but that node may be freed meanwhile by another thread (in sys-
tems without garbage collection) – problem of data persistence.

In addition (more serious): the ABA-problem

Lock-free pop-operation

21

In practice, people almost always identify concurrency testing

with stress testing,

which evaluates the behavior of a concurrent system under

heavy load for a long time.

While stress testing does indirectly increase the variety of

thread schedules, such testing is far from sufficient.

Stress testing does not cover enough different thread schedules

and, as a result, yields unpredictable results.

A bug may surface one week, when stress testing happens to

cover a low-probability schedule, and then disappear for months.

“Heisenbugs” that rarely surface and are hard to reproduce

Stress Test
22

In practice, people almost always identify concurrency testing

with stress testing, which evaluates the behavior of a concurrent

system under load for a long time.

while(true){

Setup_Test();

RunTestScenario();

err = CheckErrors();

Shutdown_Test();

if(err) break; // Error, Timeout, etc.

}

Stress Test Scheme

06.10.2015

6

23

My Test-Example: We have a queue with 4 nodes and then

concurrently pop 3 nodes and push one additional node.

(OK – it’s not really heavy load but it works –

and we need it this way later with model checking)

Setup_Test():

Create a queue with 4 nodes

RunTestScenario():

Start 4 threads: 3 ThreadPop, 1 ThreadPush

Wait for the ending of all threads (pthread_join();)

Shutdown_Test();

Delete remaining queue, free nodes

Stress Test Example
24

Concurrently pop 3 nodes and push one additional node:

ThreadPush(Params)

{

Node *node = new(Node);

node->Data = Params->Value;

push(node);

}

ThreadPop(Params)

{

Node *node = pop();

if (node) Params->Value = node->Data; //store Data

delete(node);

}

Stress Test Example

25

Concurrently pop 3 nodes and push one additional node:

ThreadPush(Params)

{ new(Node); … push(node); }

ThreadPop(Params)

{ node = pop(); … delete(node); }

Running this test for a long time showed no failures!

Most of the time short blocks (threads) will run to completion

without preemption.

This limits the likelihood that race conditions will be disclosed.

Enhancement: Insertion of random delays

Stress Test Example
26

Running the test for a long time showed no failures.

Enhancement: Insertion of random delays in push and pop:

t=top;

...

if (do-test) Sleep(wait_rand);

if (CAS(&top,t,next)) break;

wait_rand: small numbers – milliseconds

20% - no Sleep()
20% - Sleep(0)
30% - Sleep(1)
20% - Sleep(3)
10% - Sleep(9)

Stress Test with Delays

The tool ConTest (IBM) does
something like this automatically
for Java applications

06.10.2015

7

27

Enhancement: if (do-test) Sleep(wait_rand);

Now in most cases I got a failure within the first 50 ... 150 passes.

But what went wrong? (I.e. I found a failure, not the defect!)

Adding printf (attention - this may cause the failures to disappear):

T1: 9 T2: x T3: 1 T4: 3 T4: 1 - Error!

Analysis:

t0: pop1.read - sleep 9, pop2.read - no sleep - pop2.CAS+

(+ free Node), pop3.read - sleep 1, push4.read (+ new) - sleep 3

t1: pop3.CAS+

t3: push4.CAS−, push4.read again - sleep 1

t4: push4.CAS+ ABA-prone

t9: pop1.CAS+ ABA occurred !

Stress Test with Delays
28

Is ABA really a problem ? (the value has not changed)

Yes, it can – of cause – the data structure may have changed.

Imagine, we have a stack:

top −−> A −−> B −−> C −−> /

thread1 - pop():

t = top; // top = &A

next = t->Next; // next = &B

// thread2: A=pop, B=pop, push A

// top --> A --> C --> /

if (CAS(&top,t,next)) break; // succeeds !

// top --> B --> ?? -- Error !!

ABA-problem

29

ABA-prevention

we don’t call new() and delete() within the threads,
but use a pool of Nodes – each thread has it’s own Node

ThreadPush(Params)

{

Node *node = pool[Params->Nr]; //new(Node);

node->Data = Params->Value;

push(node);

}

Now the test runs without failure for an arbitrary long time!

(There is no serious ABA in systems with garbage collection

and on RISC machines with LL/SC instead of CAS)

Stress Test, ABA-prevention
30

Correctness Proof – Safety: guaranteeing that nothing bad happens

The safety aspects of concurrent data structures are complicated

by the need to argue about the many possible interleavings of

methods called by different threads.

It is infinitely easier and more intuitive for us humans to specify

how abstract data structures behave in a sequential setting,

where there are no interleavings.

Thus, the standard approach to arguing the safety properties

of a concurrent data structure is to specify the structure’s

properties sequentially, and find a way to map its concurrent

executions to these "correct" sequential ones.

(serializability, linearizability)

Linearization

06.10.2015

8

31

Different approach:

use of model checking techniques

to systematically generate all interleavings of a given scenario

A model checker essentially captures the nondeterminism
of a system and then systematically enumerates all possible
choices.

For a multithreaded process, this approach is tantamount
to running the system under a demonic scheduler.

I first learned about this technique from a paper by
Madanlal Musuvathi et. all.

CHESS: A Systematic Testing Tool for Concurrent Software
Technical Report Microsoft Research

Model Checking Techniques
32

A model checker systematically generates all possible interleavings

(example: 3 threads with 2 or 3 ‘atomic’ parts)

Model Checking Techniques

Thr. 1

Thr. 2

Thr. 3

IL 1

or IL k

or IL n

threads running parallel

demonic scheduler - only one thread is executing at any given moment

33

Another way to tell the same story:

The model checker abstracts a program as a nondeterministic
state transition system

in which each transition is executed by a task (a thread).

Given a state and task enabled in it,
executing the task results in a unique new state.

Nondeterminism arises because in each state more than one
task may be enabled and any one of them may be scheduled.

Starting from the initial state, an execution is obtained by
iteratively picking an enabled task and executing it for one step.

Given the task abstraction and knowledge of the set of tasks
enabled in a state, all such execution can be systematically
generated in a straightforward manner.

Model Checking Techniques
34

A model checker systematically generates all possible interleavings.

Our stress test scheme is still valid:

while(true){

Setup_Test();

RunTestScenario();

err = CheckErrors();

Shutdown_Test();

}

The model checker guarantees that every execution of

RunTestScenario generates a new interleaving

and that each such interleaving can be replayed (→ easy debugging).

Model Checking Techniques

// for all interleavings

// same testcase in every pass

// different interleaving

06.10.2015

9

36

Three key challenges in making model checking applicable:

1. Existing model checkers requires the programmer
to do a huge amount of work just to get started.
The “Perturbation Problem”

2. Concurrency is enabled via rich and complex concurrency API.

We wrap the concurrency APIs to capture and control the
nondeterminism, without changing the underlying OS or
reimplementing the synchronization primitives of the API.

The only perturbation here is a thin wrapper layer between
the program under test and the concurrency API.

3. The classic problem of state-space explosion.
The number of thread interleavings even for small systems
can be astronomically large.

Model Checking Techniques
37

The model checker controls the scheduling of tasks (threads)

by instrumenting all functions in the concurrency API

that create tasks and access synchronization objects.

(pthread_create(), CAS(), ReadGlobal(),

pthread_mutex_lock(), …)

The idea is that when the instrumented function is executed,

either prior the execution of function, or at its point of return, or both,

a block of code in the model checker is able to gain control.

It can obtain access to the function arguments, execute its own logic,

and even decide whether or not the instrumented function will run at all,

and with what argument values, and what it shall return.

Wrapper Layer

38

Instrumenting functions in the concurrency API –

we write wrappers (a thin wrapper layer between the program

under test and the concurrency API)

int Wrapper_CAS(void *mem, void exp, void new)

{

int re; // boolean

if (do_test) MC_sched();

re = Orig_CAS(mem, exp, new);

if (do_test) MC_CAS_Result(mem,re);

// to tackle the state-space problem

return re;

}

Wrapper Layer
39

How can we apply the wrapper layer to the test program?

If we have access to the code of the test program:

#include "MC_Wrapper.h"

and link the model-checking module to the program.

If we don’t have access to the code -

we can use DLL Injection

changing the addresses of the API routines

in the Import Address Table (IAT) of the executable (.exe) file

(I gave a lecture on API Hooking and DLL Injection in 2009)

Wrapper Layer

06.10.2015

10

40

#include "MC_Wrapper.h"

int Orig_CAS(void * mem, void exp, void new)

{

return CAS(mem, exp, new);

}

#define CAS(m,o,n) Wrapper_CAS(m,o,n)

int Wrapper_CAS(void * mem, void exp, void new)

{

int re; // boolean

if (do_test) MC_sched();

re = Orig_CAS(mem, exp, new);

return re;

}

Wrapper Layer
41

Given the knowledge of the set of tasks enabled in a state …

The model checker must know about active threads –
it needs additional scheduling points at the beginning
and at the end of each thread.

So we don’t start (create) the original thread, but a Thread-Wrapper
that brackets the call to the original thread’s function
by calls to the model checker (bookkeeping + MC_sched())

int Wrapper_pthread_create(&thr, 0, function, arg)

{

tid = MC_NewThread(); // MC tread-ID, No.

Closure c = <function, arg, tid>;

return Real_pthread_create(&thr,0,ThreadWrapper,c);

}

Wrapper Layer

42

int Wrapper_pthread_create(&thr, 0, function, arg)

{

tid = MC_NewThread();

Closure c = <function, arg, tid>;

return Real_pthread_create(&thr,0,ThreadWrapper,c);

}

A Thread-Wrapper that brackets the call to the original thread’s function
by calls to the model checker

void * ThreadWrapper(Closure c)

{

MC_ThrBegin(c.tid); // Bookkeeping + MC_sched();

retVal = c.function(c.arg);

MC_ThrEnd(c.tid); // -> MC_sched();

return retVal;

}

Wrapper Layer
43

The model checking approach is tantamount
to running the system under a demonic scheduler –

only one thread is executing at any given moment

void MC_sched(void)

{

int old,new;

old = thr_old; // global variable

new = find_new();

if (new < 0) return; // end of test

if (new==old) return; // simply go on

thr_old = new;

. . . // suspend old, resume new thread

}

MC Scheduler

06.10.2015

11

44

void MC_sched(void)

{

old = thr_old; new = find_new();

// suspend old, resume new thread

ResumeThread(new); // first

if(tcbs[old].id)

SuspendThread(old);

}

The MC-scheduler is running in the context of the active

(the old) thread. So we cannot simply suspend the old thread
and thereafter resume the new one. The scheduler would stop itself
(and the old thread) immediately – the program would hang.

– we have to reverse things.

MC Scheduler
45

old = thr_old; new = find_new();

ResumeThread(new); // first

SuspendThread(old);

We cannot simply suspend the old thread and thereafter resume
the new one – we have to reverse things.

But there might be a new problem: now (for a short time) new thread
and old thread are running at the same time.

What happens, if the new thread schedules the old thread again,
before the old thread reached it’s suspend – will it then hang?
(It gets the wake-up call before it starts sleeping.)

(Using Microsoft Threads we can detect this situation, to avoid hanging.)

MC Scheduler

46

How are things getting started?

– only one thread is executing at any given moment

void MC_ThrBegin(int tid) // in ThreadWrapper()

{

int nst = AtomicIncrement(&nstart); //global

// number_of_started_threads

pthread_t id_own = pthread_self();

tcbs[tid].id = id_own; tcbs[tid].enabled = 1;

if (nst < nthreads) SuspendThread(tid);

else{ thr_old = tid; MC_sched(); }

}

MC Scheduler
47

How are things getting started?

nst = AtomicIncrement(&nstart);

We must initialize nstart in the beginning of each test pass to 0.

We can do this (and other initializations) in the instrumented
Setup_Test() routine.

And how do things end?

void MC_ThrEnd(int tid) // in ThreadWrapper()

{

tcbs[tid].id = 0; // or NULL;

MC_sched();

}

MC Scheduler

06.10.2015

12

48

In an earlier project (talk) I used Microsoft-Threads in the test example
and in the Model Checking wrapper layer.

Now I want to use POSIX Threads (pthreads) in order to apply the
Model Checking technique also in UNIX / Linux.

#include <pthread.h>

gcc ... -lpthread

The great picture is very similar in both environments:

� The thread‘s function is coded as a C function with one parameter,
returning a status value (a void-pointer in pthreads).
Just one argument is OK for the address of an arbitrary struct.

POSIX Threads
49

The great picture is very similar in both environments:

� The thread‘s function is coded as a C function with one parameter,
returning a status value

� The thread is created (and started) by a function:
pthread_create() with 4 parameters:
the function of the thread, the argument for that function,
additional attributes (0 for the standard) and a variable to store
the ID of the created thread – later used to identify the thread

� The thread ends when its function returns or when another thread
calls pthread_cancel(ID).

� We can wait for threads: pthread_join(ID, NULL);

(the second parameter is the address of the thread‘s return value)

POSIX Threads

50

Example using pthreads:

#include <pthread.h>

pthread_t id[NUM_THREADS];

int i, rc;

void * thr_fkt(void *);

for (i=0; i<NUM_THREADS; i++) {

rc = pthread_create(&id[i], NULL,

thr_fkt, (void *)(i+1));

if (rc != 0){ printf("Error at i=%d - rc=%d \n", i, rc);

}

for (i=0; i<NUM_THREADS; i++) {

pthread_join(&id[i], NULL);

}

POSIX Threads
51

To inquire the ID of your thread use pthread_self().

Don’t compare thread IDs by their value, use pthread_equal()

instead.

void * thr_fkt(void * arg)

{

int b=0, a= (int) arg;

pthread_t id_own;

id_own = pthread_self();

while (1){

if(pthread_equal(id_own, id[b++])){ break; }

}

// b == a ??

return NULL; // pthread_exit(NULL);

}

POSIX Threads

06.10.2015

13

52

Using threads there is always the problem of synchronizing
the use of shared resources – e.g. write to shared variables.

The Posix Thread system provides pthread Mutexes and
pthread Condition Variables.

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

// static mutex - dynamic: pthread_mutex_init()

int pthread_mutex_lock(pthread_mutex_t *mutex);

int pthread_mutex_trylock(pthread_mutex_t *mutex);

int pthread_mutex_unlock(pthread_mutex_t *mutex);

We can also use Semaphores.

#include <semaphore.h>

POSIX Threads - Synchronization
53

The great picture is very similar in both environments –
but there is one big difference:

There is no SuspendThread()and no ResumeThread()in pthreads!

There is nothing similar either. What can we do?

I could use pthread Condition Variables. I use pthread_cond_wait()
to suspend the current thread and pthread_cond_signal() to
resume it later.
And I probably get the problem of the early wake up call in MC_sched()

But I have a better idea – I use semaphores.
I use one semaphore per thread and initialize it to 0.

Then I use sem_wait() to suspend a thread and sem_post() to
resume it.

POSIX Threads – Suspend and Resume

54

#include <semaphore.h>

In MC_ThrBegin(int tid) I call

tcbs[tid].id = id_own; tcbs[tid].enabled = 1;

sem_init(&tcbs[tid].sema, 0, 0); // shared, value

...

In MC_ThrEnd(int tid) I call

tcbs[tid].id = 0;

sem_destroy(&tcbs[tid].sema);

MC_sched();

void SuspendThread(int tid){ sem_wait(&tcbs[tid].sema); }

void ResumeThread(int tid){ sem_post(&tcbs[tid].sema); }

POSIX Threads – Suspend and Resume
55

Semaphores are a means of synchronization.
(It performs no ‘active wait’, the waiting threads are sleeping.)

A semaphore can be thought as an integer variable
with 2 functions: up() and down().
(In pthreads they are called sem_post() and sem_wait().)

An additional function init() is used to set the variable to a value ≥0.

down(sema) {

if (sema.value > 0) sema.value -= 1;

else { put thread to sleep (in a queue) }

}

up(sema) {

if (thread(s) in the queue){ wake up (one) thread }

else sema.value += 1;

}

Excursion on Semaphores

06.10.2015

14

56

sem_init(&tcbs[tid].sema, 0, 0); // shared, value

SuspendThread(int tid){ sem_wait(&tcbs[tid].sema); }

ResumeThread(int tid) { sem_post(&tcbs[tid].sema); }

Every thread has its own semaphore (in its tcb), initialized to 0.

SuspendThread() tries to decrease the value.

Since it is 0, the thread is put to sleep (is suspended).

ResumeThread() finds the sleeping thread and wakes it up

(resumes it).

Suspend and Resume
57

sem_init(&tcbs[tid].sema, 0, 0); // shared, value

SuspendThread(int tid){ sem_wait(&tcbs[tid].sema); }

ResumeThread(int tid) { sem_post(&tcbs[tid].sema); }

What about the problem, if the new thread schedules the old thread
again, before the old thread reached it’s suspend – will it then hang?
(It gets the wake-up call before it starts sleeping.)

ResumeThread() increases the value to 1.

SuspendThread() decreases the value to 0.

The thread is not put to sleep.
It is still running – as it was intended.

Suspend and Resume

58

The code of MC_sched() just shows the big picture.

But we left the task of systematically generating

all possible interleavings to find_new().

We use a Backtracking Algorithm

similar to generating all permutations of a set of numbers.

Problem here:
Backtracking means to go back in a list sometimes –
but in our list of steps of threads we cannot simply go back
– we (usually) cannot undo a performed step of computation

So instead of going back in the list, we replay the list
from the beginning up to the point where the changes start.

MC Scheduler, Generating Interleavings
59

Backtracking Algorithm
similar to generating all permutations of a set of elements.

All positions in the list are initialized to 0 (empty) and k=1 (1st pos.)

When at position k>0 in the list:

a := list[k]; if (a>0) free[a] += 1; // mark a as free;

choose the lowest free element b>a
(the thread (enabled threads only) with the lowest number b>a)

o if there is such an element/thread b
list[k] := b; free[b] −= 1; // mark b as used

go to the right (k := k+1)

o otherwise: list[k] := 0; go to the left (k := k–1)
(if a was 0, we found a new permutation / our test run is complete,
go to the left for one more permutation / a new test run)

MC Scheduler, Generating Interleavings

06.10.2015

15

60

a := list[k]; choose the lowest free element b>a

if (b)
list[k] := b; k := k+1;

else
list[k] := 0; k := k−1;

1 1 2 2 3 3

31 1 2 2 3

MC Scheduler, Generating Interleavings
61

a := list[k]; choose the lowest free element b>a

if (b)
list[k] := b; k := k+1;

else
list[k] := 0; k := k−1;

1 1 2 2 3 3

31 1 2 2 323

replay list

MC Scheduler, Generating Interleavings

62

We cannot undo a performed step of computation.

Instead of going back in the list, we replay the list from the
beginning up to the point where the changes start.

(The scheduler keeps track of this point.)

Is a perfect replay always possible?

No, if there are other sources of nondeterminism:

� Different input values or initial states
� Calls to time() or random()

� Asynchronous I/O

We always enforce the same initial state using Setup_Test()

MC Scheduler, Generating Interleavings
63

The model checker must keep track of the set of enabled threads

in the presence of potentially blocking operations.

The wrapper function for pthread_mutex_lock (for example)

cannot simply call pthread_mutex_lock() directly:

int Wrapper_pthread_mutex_lock(mutex);

{

MC_SyncVar(mutex, ACQUIRE);

return pthread_mutex_lock(mutex); // wrong!!

}

If the mutex is currently held by another thread,
the MC-scheduler will deadlock!

The calling thread is the only running thread, it must not block.

MC Scheduler, Blocking Operations

06.10.2015

16

64

The wrapper function for pthread_mutex_lock cannot

simply call pthread_mutex_lock() directly (it must not block)

– instead it just tries with the non-blocking function …_trylock()

int Wrapper_pthread_mutex_lock(mutex);

{

while(true){

MC_SyncVar(mutex, ACQUIRE);

if(pthread_mutex_trylock(mutex)==0) return 0;

MC_SyncVar(mutex, BLOCKED); // MC_sched()

}

}

If the lock is held by another thread …_trylock returns EBUSY .

MC Scheduler, Blocking Operations
65

If the mutex is held by another thread, MC_SyncVar(mutex,BLOCKED)

� disables the current thread,

� adds it to the set of threads waiting on mutex

� and schedules a new (active) thread.

Later on

int Wrapper_pthread_mutex_unlock(mutex)

{

MC_SyncVar(mutex, RELEASE);

return pthread_mutex_unlock(mutex);

}

re-enables all threads waiting on mutex.

MC Scheduler, Blocking Operations

66

Same example as with stress test:

We have a queue with 4 nodes and then

concurrently pop 3 nodes and push one additional node.

But instead of Sleep(wait_rand) we now call MC_sched()

pass 300 # 1.1 2.1 1.4 3.1 3.4 4.1 4.4 2.4 ## Error!!

Analysis:

1.1 … 3.4 – Number_of_Thread . Operation

Operation:

1 - Read, 3 - CAS−, 4 - CAS+

First Results
67

We have a queue with 4 nodes and then

concurrently pop 3 nodes and push one additional node.

pass 300 # 1.1 2.1 1.4 3.1 3.4 4.1 4.4 2.4 ## Error!!

Analysis (is now simple, steps happened sequentially):

pop1.read, pop2.read, pop1.CAS+ (+ free Node),

pop3.read, pop3.CAS+ ,

push4.read (+ new Node), push4.CAS+ ABA-prone

pop2.CAS+ ABA occurred !

top −−> A −−> B −−> C −−> D −−> / pop2.read: next = &B

top −−> A* −−> C −−> D −−> / top −−> B!! −−> ??

First Results

06.10.2015

17

68

We have a queue with 4 nodes and then

concurrently pop 3 nodes and push one additional node.

Sometimes ABA is correct: read, push(), pop(), CAS+

pass 31 # 1.1 1.4 2.1 3.1 4.1 4.4 2.3 2.4 3.4 (no Error)

Analysis:

pop1.read, pop1.CAS+

pop2.read, pop3.read,

push4.read, push4.CAS+

pop2.CAS−, pop2.CAS+, pop3.CAS+ ABA here correct

First Results
69

We have a queue with 4 nodes and then

concurrently pop 3 nodes and push one additional node.

With ABA-prevention

(we don’t call new() and delete() within the threads,
but use a pool of Nodes – each thread has it’s own Node)

Stress Test (with random delays) showed no results (no failures).

Also the Module Checker Test runs without failure.

Since we systematically tested all possible interleavings,
this is more a proof, an (automated) formal verification than a test.
– If the test scenarios are thoroughly chosen and all

essential scheduling points are utilized.

First Results

70

The problem of state-space explosion:

the number of thread interleavings even for small systems

can be astronomically large.

Possibilities:

� Scope preemptions to code regions of interest

� Different Modes – speed vs coverage

� Don’t analyze redundant interleavings

Tackling the State-Space Problem
71

Different Modes: speed vs coverage

Fast mode - Introduce schedule points only before

synchronizations and possibly volatile accesses

(also called preemption bounding)

Finds many bugs in practice (Less often is more!)

Data-race mode - Introduce schedule points before memory accesses

Finds race-conditions due to data races

Tackling the State-Space Problem

06.10.2015

18

72

Don’t analyze redundant interleavings.

Two steps are independent (and can change their place) if

� They are executed by different threads and

� either they access different variables

or READ (not WRITE !) the same variable

Interleavings which only differ in the order of independent steps

have the same result – only one of them needs to be analyzed.

Unsuccessful CAS operations also only READ a variable,

but we cannot easily know in advance, whether the CAS will be

successful or not.

Tackling the State-Space Problem
73

We cannot know in advance, whether the CAS will be successful.

My approach:

Try the CAS.

Deliver the CAS status to the scheduler (MC_CAS_Result(mem,re))

Cancel this run if the CAS was unsuccessful and the

interleaving is redundant.

The point up to where the list will be replayed

is shifted to the left of the position of the CAS.

So all following interleavings with the same reason of redundancy

are skipped automatically.

Results: LIFO: 1 488 instead of 36 936 – 4%

FIFO: 65 964 instead of 11 887 944 – 0.5%

Tackling the State-Space Problem

74

We must be careful –

In our example push4.read means: run the thread until the read
operation (top), but not until CAS.
But that includes the new(Node)operation in the ThreadPush thread.

As we have seen, the order of new and delete operations can be

important for occurring the ABA problem.

So our push_x.read operations are not really independent,
interleavings which only differ in the order of such operations
are not redundant.

Fortunately in our LIFO stack example we have just one push thread,
there is no problem. But otherwise one has to pay attention.

Tackling the State-Space Problem
75

Two entry points (pointers): Node *Head, *Tail;

To avoid special cases (the empty queue)
the queue always includes a dummy node as the first node

Introduced by Michael and Scott (→ the MS-queue)
included in the standard JavaTM Concurrency Package (JSR-166)

We enqueue at the tail (after the so far last node)

we dequeue at the head (unless the queue is empty)
we read the next node
after the dummy,

then this node becomes
the new dummy

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

06.10.2015

19

76

We enqueue data at the tail

we create a new Node:

Node * node = new(Node);

node->Data = data;

node->Next = NULL; // important!

to enqueue this node we have to change two pointers:

first – the Next-field of the so far last node (was NULL)

second – Tail

(not possible
in one single
atomic step)

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

77

To enqueue a node we have to change two pointers: Next and Tail
A first (incomplete) routine looks like this:

void Enqueue(Type data)

{ Node *node, *t, *next;

1: node = new(Node);

node->Data = data; node->Next = NULL;

while(true){

2: t = Tail;

4: if (CAS(&t->Next,NULL,node)) break;

}

5: CAS(&Tail,t,node);

}

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

78

while(true){

2: t = Tail;

next = t->Next;

3: if (next != NULL) {CAS(&Tail,t,next); continue}

4: if (CAS(&t->Next,NULL,node)) break;

}

5: CAS(&Tail,t,node);

If one thread has performed step 4, but not yet step 5 (when it is blocked)
other threads cannot succeed in step 4 (t->Next != NULL)
→ the algorithm (so far – without step 3) is not lock-free !

To repair this, threads must be able to adjust Tail
(step 3 in our tread instead of step 5 in the blocking thread)

– our thread assists the obstructing tread

FIFO Queue
79

The complete, lock-free routine:

void Enqueue(Type data)

{ Node *node, *t, *next;

node = new(Node);

node->Data = data; node->Next = NULL;

while(true){

t = Tail;

next = t->Next;

if (next!=NULL) {CAS(&Tail,t,next); continue}

if (CAS(&t->Next,NULL,node)) break; //lin. point

}

CAS(&Tail,t,node);

}

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

06.10.2015

20

80

To dequeue we (usually) change only one pointer - Head
(step 3 is analogous to step 3 in Enqueue)

Type Dequeue(void)

{ Node *h, *t, *next; Type data;

while(true){

h = Head; t = Tail;

1: next = h->Next;

2: if (next == NULL) return EMPTY;

3: if (h == t) { CAS(&Tail,t,next); continue}

data = next->Data; // next behind dummy

4: if (CAS(&Head,h,next)) break; // new dummy

}

return data;

}

FIFO Queue

Data: B

Next: NULL

Data: A

Next: &B

Dummy

Next: &A

Head: &Dm Tail: &B

81

The Module Checker Tests of several test scenarios using

Enqueue() and Dequeue() were running without failure.

Why is this interesting?

� We have here much more complicated code,
with 2 or even 3 CAS operations
instead of just 1 in push/pop

� In literature the algorithms of the MS-queue are shown with
one additional if-clause

(which is superfluous in my opinion, just an additional ‘VALIDATE’)

The tests showed I was right. The algorithms do

work correctly without that additional if-clause.

Results

82

Is such Module Checking Test Tool useful for large systems?

(Robustness and Usability ?)

Mine is not – there are much more cases to be considered

– but CHESS probably is !

CHESS has been integrated into the test frameworks of many code

bases inside Microsoft and is being used by testers on a daily basis.

(Yes – by testers, not only by the authors of CHESS)

CHESS has found numerous previously unknown bugs

in systems that had been stress tested for many months

prior to being tested by CHESS.

CHESS works with Win-API, .NET and Singularity.

Results
83

When your multithreaded software is intended to run both on

multi-processor and on single-processor machines:

(stress-) test it on a machine with the highest available number

of processors (increase the likelihood of interferences)

It has shown that it is advantageous when the number of threads

is a (small) multiple of the number of processors.

Be aware that your test program can mask potential negative

interactions.

Stress testing with random delays is easy to accomplish

and often shows good results (i.e. finds failures).

Hints for Testing Concurrent Software

06.10.2015

21

84

Try to encapsulate concurrent interactions in a few well tested

functions.

Concurrency mechanisms, such as our FIFO queue, often act

as a conduit for moving objects from one thread to another.

Make the generation of the objects on one side and

the further work with them on the other side thread-safe,

and treat the objects as immutable while in the queue.

Hints for Writing Concurrent Software
85

Nir Shavit
Data Structures in the Multicore Age
Communications of the ACM, Vol. 54, No. 3, March 2011, pp. 76-84

ISTQB
Certified Tester, Foundation Level Syllabus, Version 2011

Madanlal Musuvathi, Shaz Qadeer, Thomas Ball
CHESS: A Systematic Testing Tool for Concurrent Software
Technical Report MSR-TR-2007-149,
Microsoft Research, Redmond, WA 98052

Sebastian Burckhardt, Madan Musuvathi, Shaz Qadeer
CHESS: Analysis and Testing of Concurrent Programs
Microsoft Research, Tutorial at PLDI 2009

CHESS homepage: http://research.microsoft.com/en-us/projects/chess/

References, Shortlist

86

Maged M. Michael, Michael L. Scott
Simple, Fast, and Practical Non-Blocking and Blocking Concurrent
Queue Algorithms
Proceedings of the 15th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’96), New York, USA, ACM (1996)
pp. 267-275

Maurice Helihy, J. Eliot B. Moss
Transactional Memory: Architectural Support for Lock-Free Data Structures
Proceedings of the 20th annual international symposium on
computer architecture (ISCA '93), New York, USA, ACM (1993)
pp. 289-300

All the papers can be found as pdf-files in the internet.

References, Shortlist

