Advanced Java Programming

Kitlei Rébert

Department of Programming Languages and Compilers
ELTE Faculty of Informatics

Kitlei Rébert (ELTE) Advanced Java Programming 1/13

Dependency management €00000 .jar files 0O

Java compilation

e _java files are compiled to .class by the compiler

o What if there are too many of them?
¢ We need to use external libraries
¢ We need to run tests

e Solution: build tools (with package managers, also called
dependency managers)
o Maven
o Ant+lvy
o Gradle
& jpmdé;j

Kitlei Rébert (ELTE) Advanced Java Programming

2/13

http://search.maven.org/
http://ant.apache.org/ivy/
https://www.jpm4j.org/

Dependency management 00000 .jar files 0O

Maven configuration
e POM: Project Object Model (contained in pom.xml)

o Describes the project configuration
o GAV: groupld:artifactld:version
o Packaging: the result of the build (pom, jar, war, ear, ..)

<?7xml version="1.0" encoding="UTF-8"7>

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>hu.elte.inf.kitlei</groupId>
<artifactId>mypackagename</artifactId>
<version>1.0</version>
<packaging>jar</packaging>

</project>

e The project directory structure is fixed

¢ src/main: contains /java, /webapp and resources
¢ src/test: contains /java and resources
© target: output directory

Kitlei Rébert (ELTE) Advanced Java Programming 3/13

Dependency management OO®000 .jar files 0O

Maven POM

e POMs can control many projects

¢ each will have a pom.xml in their directories
<project>

<packaging>pom</packaging>
<modules>
<module>project1</module>
<module>project2</module>
</modules>
</project>

Kitlei Rébert (ELTE) Advanced Java Programming 4/13

Dependency management OO0O@00 .jar files 0O

Maven Build Phases

e Build Lifecycle: When the project is built, the following steps are run

<&

validate, initialize

generate—sources, generate-resources ONhh process—)
compile (with process-classes)

test (with some more related steps)

package (with prepare-)

integration-test (with pre- and post-)

verify

install

deploy

[R I R IR VR O R R

e Goal: Invoke these steps (and everything above it) by executing
mvn <phase name>

o There is also mvn clean (with pre-clean, post-clean)
¢ Set more goals one after the other: mvn clean compile

Kitlei Rébert (ELTE) Advanced Java Programming 5 /13

Dependency management OO00@0 .jar files 0O Loading ¢

Dependency management
e If your project needs a library, Maven finds it
o Transitive: if your library needs a library (which needs a library etc.),
Maven still finds them and downloads them
o .. provided that they are in the Maven Central Repository
¢ Alternatively, you can setup a Proxy Repository
e The required library's GAV has to be added to the POM

<project>
<dependencies>

<dependency>
<groupId>com.testsite</groupld>
<artifactId>program-tester</artifactId>
<version>1.0</version>
<scope>test</scope>

</dependency>

</dependencies></project>

e More: exclude, optional, manual clash resolution

Kitlei Rébert (ELTE) Advanced Java Programming 6 /13

Dependency management 00O000@ .jar files 0O Loading

Other similar tools

e Ant: build system, lvy: dependency manager

o More flexible, e.g. directory structures are not fixed
o Compatible with Maven repositories

e Gradle

o uses Groovy, a language similar to Java

Kitlei Rébert (ELTE) Advanced Java Programming 7/13

.jar files ®0

Jar files

e Libraries in Java are usually . jar files
e They are zip files, usually created with the jar tool
e They contain:

¢ META-INF/MANIFEST.MF: metadata
» Automatically created if unspecified
¢ .class files: bytecode for the JVM

» They have to be placed in a directory hierarchy

» The directory hierarchy has to respect the package hierarcy

» E.g. abc.def.hij.Xyz has to go in Xyz.class in abc/def/hij
inside the archive

Kitlei Rébert (ELTE) Advanced Java Programming 8 /13

.jar files c®

The jar tool

e Similar to tar

o create, extract, update
¢ verbose, from file, include manifest

jar cvf test.jar hu/elte/inf/*.class
jar cvfm test.jar test.mf hu/elte/inf/*.class

e The manifest can contain things like:

Classpath: ./test.jar
Main-Class: Test

e Jar files can be added to the classpath manually

java —cp .:mylibrary.jar LibraryUser

Kitlei Rébert (ELTE) Advanced Java Programming

9/13

Dependency management .jar files 0O Loading €000

Class loading

e Classes are usually stored locally
e .. but they can be dynamically loaded

o Java Web Start: start a Java program from a web page
o Proxies can be downloaded from naming services

» They contain code to access remote services

// String boolean
Class r = loadClass(className, resolvelt);

e resolvelt: Should the referenced classes be loaded as well?
e When are classes loaded?

© When bytecode from it has to be executed (e.g. new MyClassQ) ;)
© When bytecode statically refers to it (e.g. System.out)

Kitlei Rébert (ELTE) Advanced Java Programming 10 /13

Dependency management O .jar files 0O Loading 0®00

Using class loaders

e The virtual machine uses the primordial class loader to start the
program

¢ It loads java.lang.0bject
¢ It knows some trusted classes
¢ It can be replaced by a custom one

» Subclass of java.lang.ClassLoader, only method: loadClass
e Usual tasks of loadClass

Verify class name

Check to see if the class requested has already been loaded
Check to see if the class is a system class

Attempt to fetch the class from this class loader’s repository
Define the class for the VM

Resolve the class

Return the class to the caller

[I R IR VIR e IR

Kitlei Rébert (ELTE) Advanced Java Programming 11 /13

.jar files 0O Loading 000

Custom class loader

Map<String, Class> loadedClasses;
public synchronized Class loadClass(String className,
boolean resolvelt)
throws ClassNotFoundException {
byte classDatal];

Class cached = loadedClasses.get(className);
if (cached '= null) return cached;
try {
// try to get class from classpath
return super.findSystemClass(className);
} catch (ClassNotFoundException e) {
System.out.println("Not a system class.");

}

Kitlei Rébert (ELTE) Advanced Java Programming 12 /13

.jar files 0O Loading 000®

Issues

e lLoaded classes can be a security hazard

o A class in a sensitive package, e.g. java.lang, can access critical
data

o Careless handling of the className argument can lead to bad things
e Instances of the loaded class cannot be cast to their proper types

¢ Only a cast to a trusted class/interface is allowed

¢ So a base class or interface (loaded by the primordial class loader) has
to be used

CustomClassLoader ccl = new CustomClassLoader();

Class c¢ = ccl.loadClass("MyCl.txt");

Object o = c.newInstance();

((MyCl)o) .myMethod () ; // tnvalid, only ccl knows of MyCl

IFace ifc = (IFace)o; // common solution supposing that
// MyCl implements this interface

((IFace)o) .myIFaceMethod(); // this is OK, too

Kitlei Rébert (ELTE) Advanced Java Programming 13 /13

	Dependency management
	.jar files
	Loading

