
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
Room R4.20, steen@cs.vu.nl

Chapter 10: Distributed Object-Based Systems

Version: December 10, 2012

Distributed Object-Based Systems 10.1 Architecture

Remote distributed objects

Data and operations encapsulated in an object
Operations implemented as methods grouped into interfaces
Object offers only its interface to clients
Object server is responsible for a collection of objects
Client stub (proxy) implements interface
Server skeleton handles (un)marshaling and object invocation

Server machine

Object

Client machine

Proxy

Same
interface
as object

Interface

State

MethodClient
invokes
a method

Network

Skeleton
invokes
same method
at object

Marshalled invocation
is passed across network

Client OS Server OS

Server

Skeleton

Client

2 / 22

Distributed Object-Based Systems 10.1 Architecture

Remote distributed objects

Types of objects I
Compile-time objects: Language-level objects, from which proxy
and skeletons are automatically generated.
Runtime objects: Can be implemented in any language, but
require use of an object adapter that makes the implementation
appear as an object.

Types of objects II
Transient objects: live only by virtue of a server: if the server exits,
so will the object.
Persistent objects: live independently from a server: if a server
exits, the object’s state and code remain (passively) on disk.

3 / 22

Distributed Object-Based Systems 10.2 Processes

Processes: Object servers

Servant
The actual implementation of an object, sometimes containing only
method implementations:

Collection of C or COBOL functions, that act on structs, records,
database tables, etc.
Java or C++ classes

Skeleton
Server-side stub for handling network I/O:

Unmarshalls incoming requests, and calls the appropriate servant
code
Marshalls results and sends reply message
Generated from interface specifications

4 / 22

Distributed Object-Based Systems 10.2 Processes

Processes: Object servers

Object adapter
The “manager” of a set of objects:

Inspects (as first) incoming requests
Ensures referenced object is activated (requires identification of
servant)
Passes request to appropriate skeleton, following specific
activation policy
Responsible for generating object references

5 / 22

Distributed Object-Based Systems 10.2 Processes

Processes: Object servers

Local OS

Request
demultiplexer

Object adapter

Object's stub
(skeleton)

Server with three objects
Server machine

Object adapter

Observation
Object servers determine
how their objects are
constructed

6 / 22

Distributed Object-Based Systems 10.2 Processes

Example: Ice

main(int argc, char* argv[]) {
Ice::Communicator ic;
Ice::ObjectAdapter adapter;
Ice::Object object;
ic = Ice::initialize(argc, argv);

adapter = ic->createObjectAdapterWithEndPoints
("MyAdapter","tcp -p 10000");

object = new MyObject;

adapter->add(object, objectID);
adapter->activate();

ic->waitForShutdown();
}

Note
Activation policies can be changed by modifying the properties
attribute of an adapter. Ice aims at simplicity, and achieves this partly
by putting policies into the middleware.

7 / 22

Distributed Object-Based Systems 10.3 Communication

Remote Method Invocation (RMI)

Basics
(Assume client stub and server skeleton are in place)

Client invokes method at stub
Stub marshals request and sends it to server
Server ensures referenced object is active:

Create separate process to hold object
Load the object into server process
...

Request is unmarshaled by object’s skeleton, and referenced method is
invoked
If request contained an object reference, invocation is applied recursively
(i.e., server acts as client)
Result is marshaled and passed back to client
Client stub unmarshals reply and passes result to client application

8 / 22

Distributed Object-Based Systems 10.3 Communication

RMI: Parameter passing

Object reference
Much easier than in the case of RPC:

Server can simply bind to referenced object, and invoke methods
Unbind when referenced object is no longer needed

9 / 22

Distributed Object-Based Systems 10.3 Communication

RMI: Parameter passing

Object-by-value
A client may also pass a complete object as parameter value:

An object has to be marshaled:

Marshall its state
Marshall its methods, or give a reference to where an
implementation can be found

Server unmarshals object. Note that we have now created a copy
of the original object.
Object-by-value passing tends to introduce nasty problems

10 / 22

Distributed Object-Based Systems 10.3 Communication

RMI: Parameter passing

Local object
O1

Copy of O1

Remote object
O2

Local
reference L1

New local
reference

Remote
reference R1

Remote
invocation with
L1 and R1 as
parameters

Copy of R1 to O2

Machine A Machine B

Machine C

Client code with
RMI to server at C
(proxy)

Server code
(method implementation)

Note
Systemwide object reference generally contains server address, port to which
adapter listens, and local object ID. Extra: Information on protocol between
client and server (TCP, UDP, SOAP, etc.)

11 / 22

Distributed Object-Based Systems 10.3 Communication

RMI: Parameter passing

Local object
O1

Copy of O1

Remote object
O2

Local
reference L1

New local
reference

Remote
reference R1

Remote
invocation with
L1 and R1 as
parameters

Copy of R1 to O2

Machine A Machine B

Machine C

Client code with
RMI to server at C
(proxy)

Server code
(method implementation)

Question
What’s an alternative implementation for a remote-object reference?

12 / 22

Distributed Object-Based Systems 10.3 Communication

Object-based messaging

Client
proxy

Callback
interface

Client
RTS

Client application

2. Request to server

4. Call by the RTS

1. Call by the
application

3. Response from server

Client
proxy

Polling
interface

Client
RTS

Client application

2. Request to server

1. Call by the
application

3. Response from server

4. Call by the
application

13 / 22

Distributed Object-Based Systems 10.4 Naming

Object references

Observation
In order to invoke remote objects, we need a means to uniquely refer
to them. Example: CORBA object references.

Repository
identifier

IIOP
version Host Port Object key Components

Profile
ID

Tagged Profile

Object
identifier

Adapter
identifier

Other server-
specific information

Profile

Interoperable Object Reference (IOR)

14 / 22

Distributed Object-Based Systems 10.4 Naming

Object references

Observation
It is not important how object references are implemented per object-based
system, as long as there is a standard to exchange them between systems.

Object system A Object system B

Object server Interoperable
references

(Half) gateway

Solution
Object references passed from one RTS to another are transformed by the
bridge through which they pass (different transformation schemes can be
implemented)

15 / 22

Distributed Object-Based Systems 10.4 Naming

Object references

Object system A Object system B

Object server Interoperable
references

(Half) gateway

Observation
Passing an object reference refA from RTS A to RTS B circumventing
the A-to-B bridge may be useless if RTS B doesn’t understand refA

16 / 22

Distributed Object-Based Systems 10.4 Naming

Globe object references: location independent

Stacked address
Stack of addresses representing the protocol to speak:

Field Description
Protocol ID Constant representing a (known) protocol
Protocol addr. Protocol-specific address
Impl. handle Reference to a file in a repository

Instance address
Contains all that is needed to talk in a propritary way to an object:

Field Description
Impl. handle Reference to a file in a repository
Initialization string Used to initialize an implementation

17 / 22

Distributed Object-Based Systems 10.6 Consistency and Replication

Consistency and replication

Observation
Objects form a natural means for realizing entry consistency:

Data are grouped into units, and protected by a synchronization
variable (i.e., lock)
Synchronization variables adhere to sequential consistency (i.e.,
values are set atomically)
Operations of grouped data can be nicely grouped: object

Problem
What happens when objects are replicated? One way or the other we
need to ensure that operations on replicated objects are properly
ordered.

18 / 22

Distributed Object-Based Systems 10.6 Consistency and Replication

Replicated objects

Problem
We need to make sure that requests are ordered correctly at the
servers and that threads are deterministically sheduled

Middleware

Local OS

Threads

Unordered requests

Totally ordered
requests

Middleware

Local OS

Threads
Thread

scheduler

Deterministic
thread scheduling

Unordered requests

Object

Computer 1 Computer 2

T1
1 T1

2 T2
1 T2

2

19 / 22

Distributed Object-Based Systems 10.6 Consistency and Replication

Replicated objects

Observation
We are dealing with nasty issues here. Simplicity may dictate
completely serialized (i.e., single-threaded) executions at the server.

20 / 22

Distributed Object-Based Systems 10.6 Consistency and Replication

Replicated invocations

Active replication
Updates are forwarded to multiple replicas, where they are carried out.
There are some problems to deal with in the face of replicated
invocations

Client replicates
invocation request

All replicas see
the same invocation

Object receives
the same invocation
three times

Replicated object

A

B1

B2

B3

C

21 / 22

Distributed Object-Based Systems 10.6 Consistency and Replication

Replicated invocations

Solution
Assign a coordinator on each side (client and server), which ensures
that only one invocation, and one reply is sent

Coordinator
of object B

Result

Coordinator
of object C

(a) (b)

Client replicates
invocation request

B1 B1

B2 B2

B3 B3

C1 C1

C2 C2

A A

Result

22 / 22

